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Abstract
We consider a perturbed integrable system with one frequency, and the
approximate dynamics for the actions given by averaging over the angle. A
classical qualitative result states that, for a perturbation of order ε, the error of
this approximation is O(ε) on a time scale O(1/ε), for ε → 0. We replace
this with a fully quantitative estimate; in certain cases, our approach also gives
a reliable error estimate on time scales larger than 1/ε. A number of examples
are presented; in many cases, our estimator practically coincides with the
envelope of the rapidly oscillating distance between the actions of the perturbed
and of the averaged systems. Fairly good results are also obtained in some
‘resonant’ cases, where the angular frequency is small along the trajectory of the
system. Even though our estimates are proved theoretically, their computation
in specific applications typically requires the numerical solution of a system
of differential equations. However, the time scale for this system is smaller
by a factor ε than the time scale for the perturbed system. For this reason,
computation of our estimator is faster than the direct numerical solution of the
perturbed system; the estimator is also rapidly found in the cases when the time
scale makes impossible (within reasonable CPU times) or unreliable the direct
solution of the perturbed system.

PACS numbers: 02.30.Hq, 05.45.−a, 45.20.Jj
Mathematics Subject Classification: 70K65, 70K70, 34C29, 70H09, 37J40

1. Introduction

The averaging method is a classical tool to analyse dynamical systems with fast angular
variables: the idea is to average over the angles, to obtain an approximate evolution law for the
slow variables (from now on, called the actions). Many applications are physically relevant;
so, error estimates for this technique on long time scales have an obvious interest.
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Concerning these estimates, the case of one angle is the simplest one due to the structure of
its ‘resonances’, which are produced only by the vanishing of the angular frequency. However,
this one-frequency case covers non-trivial situations: for example, it includes the perturbed
Kepler problem, appearing in applications such as the dynamics of a satellite around an oblate
planet and/or in the presence of dragging (see [7] and references therein).

The classical theory for the one-frequency case states that, under a perturbation O(ε) of a
dynamical system with one angle and many actions, the difference between the actions of the
perturbed and of the averaged systems is O(ε) on a time scale O(1/ε), for ε → 0: see [1–4, 7]
(the two last references are also useful for general historical and bibliographical information).
This is a qualitative result; the nth-order extensions of the averaging method proposed in the
literature [4] are usually treated at the same qualitative level, the conclusion being that some
reminder term is O(εn) on a time scale O(1/ε). To get these O(ε) or O(εn) bounds, one
generally writes a number of quite rough majorizations, often containing unspecified constants
but sufficient to obtain a linear integral inequality for the reminder; the latter is used to obtain
the wanted bounds through the Gronwall lemma.

Of course, the previously mentioned results are not fully satisfactory if one aims
at obtaining precise numerical values from the error analysis; the situation is especially
uncomfortable near resonances, i.e., when the time evolution carries the system close to a zero
of the angular frequency.

In this paper, we show that working carefully, and avoiding unnecessary simplifications,
it is possible to derive fully quantitative and precise error estimates for the standard (n = 1)

averaging method, for a (small) fixed ε: this requires to solve a nonlinear integral inequality,
or a related differential equation, coupled to a set of auxiliary differential equations. In typical
cases, this is done numerically; however, the treatment of the above system of equations is
much less expensive than the direct numerical solution of the action-angle evolution equations;
in fact, to get information on an interval [0, U/ε) it suffices to solve the previously mentioned
set of equations on the interval [0, U).

To our knowledge, a quantitative error analysis for the averaging method has been
previously proposed in [8]; however, in this reference the attention is mainly focused on
specific applications, admitting a simple analytical treatment, rather than on a general scheme.
In a broader sense, the present paper has some connection with [6]; in the cited reference, a
quantitative analysis has been proposed for a rather general class of approximation methods
for the evolution equations (in abstract Banach spaces, so to include the case of evolutionary
PDEs).

1.1. A precise setting of the problem

Let us be given an open set � of Rd (the space of the actions) and the one-dimensional
torus T:

� = {I = (I i)i=1,...,d} ⊂ Rd , T := R/(2πZ) = {ϑ}. (1.1)

We fix some initial data

I0 ∈ �, ϑ0 ∈ T (1.2)

and consider the perturbed one-frequency system{
dI/dt = εf (I,�), I(0) = I0,

d�/dt = ω(I) + εg(I,�), �(0) = ϑ0
(1.3)

for two unknown functions I : t �→ I(t) ∈ �,� : t �→ �(t) ∈ T. This Cauchy problem
contains the unperturbed frequency

ω ∈ Cm(�, R), ω(I) �= 0 for all I ∈ �; (1.4)
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the perturbation is governed by a parameter ε > 0, and by two functions

f = (f i)i=1,...,d ∈ Cm(� × T, Rd), g ∈ Cm(� × T, R),

(I, ϑ) �→ f (I, ϑ), g(I, ϑ); (1.5)

throughout the paper, for technical reasons it is assumed that m � 2.
From now on ‘the solution (I,�) of (1.3)’ means the maximal solution in the future,

i.e., the one with the largest domain of the form [0, T ), T ∈ (0, +∞] (of course, this domain
generally depends on the initial data). Any expression like ‘the solution (I,�) exists on D’
means that D is a subset of [0, T ). It is hardly the case to observe that I,� are Cm+1 functions.

The averaged system associated with (1.3) is the Cauchy problem

dJ

dτ
= f (J), J(0) = I0,

f = (f i) ∈ Cm(�, Rd), I �→ f (I) := 1

2π

∫
T

dϑf (I, ϑ);
(1.6)

the unknown is a function J : τ �→ J(τ ) ∈ �. In the same language as before, we stipulate
that ‘the solution J of (1.6)’ means the maximal one in the future; again, we have a Cm+1

function.
The system (1.6) will be compared with (1.3) for τ = εt , i.e., interpreting τ as a rescaled

time; if (I,�) is the solution of (1.3) and J is the solution of (1.6) with the same datum I0 as
in (1.3), the aim is to evaluate the difference t �→ I(t) − J(εt).

The classical result on this subject is an estimate

|I(t) − J(εt)| � Cε for t ∈ [0, 1/ε) , (1.7)

holding for all sufficiently small ε, under suitable technical conditions (especially, a lower
bound |ω(I)| � c > 0 on a convenient domain); in the above, C is a constant independent of ε.
In principle, one could obtain for C a (very complicated) expression, for example evaluating
all the constants in the derivation of (1.7) by [1]; however, the explicit bound obtained in
this way is not satisfactory, since in typical examples it largely overestimates the difference
I(t) − J(εt) .

1.2. Contents of the paper

Throughout the paper, the parameter ε is fixed in (0, +∞); of course, our statements are
interesting mainly if ε is small (and are accompanied by comments which assume this). Our
aim is to perform an accurate analysis of the distance between I and J; this will ultimately
yield a bound

|I(t) − J(εt)| � εn(εt) for t ∈ [0, U/ε), (1.8)

where n : τ �→ n(τ ) fulfils an integral inequality, or a related differential equation, for τ

within an interval [0, U). (As we will show, the existence of J, n and some more auxiliary
functions for τ ∈ [0, U) grants the existence of the solution (I,�) of (1.3) for t ∈ [0, U/ε)).

Typically, the estimator n must be computed solving numerically the above mentioned
differential equation; however, this is much less expensive than the numerical solution of (1.3),
because n depends on the ‘slow’ time variable τ = εt and thus must be determined on an
interval of length U to get an estimate for t ∈ [0, U/ε) (these considerations can be extended
to all the auxiliary functions required in this approach). In the examples we will present, the
function t �→ εn(εt) obtained in this way often coincides with the ‘envelope’ of the rapidly
oscillating function t �→ |I(t) − J(εt)|, giving practically the best possible bound of the form
(1.8). Our bound turns out to be fairly good also in some resonant cases (where ω vanishes
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at the boundary of � and the actions are close to it, either initially or over long times). As
expected, in each example the CPU time for the computation of n is much shorter than the
CPU time for the direct solution of (1.3).

If U � 1, equation (1.8) can be regarded as a quantitative formulation of the classical
theory, involving the time scales 1 and 1/ε. However, in certain cases our approach works as
well for U � 1, yielding accurate estimates for |I(t) − J(εt)| on the extremely large interval
[0, U/ε); one can even jump to the time scales U � 1/ε, U/ε � 1/ε2.

The general setting of our approach is described in section 2, where we use systematically
the function

t �→ L(t) := 1

ε
[I(t) − J(εt)]. (1.9)

After introducing a set of auxiliary functions and differential equations, in lemma 2.1 we obtain
an exact integral equation for L; then, in proposition 2.4 we derive an integral inequality and
show that any solution τ �→ n(τ ) of this inequality gives a bound |L(t)| < n(εt). For practical
purposes, it is convenient to relate the integral inequality for n to a differential equation, which
is the subject of proposition 2.5; the solution n of the differential equation gives a bound
|L(t)| � n(εt), which is equivalent to equation (1.8).

The subsequent section 3 summarizes the path to n, and discusses tests for the efficiency
of this estimator. The final section 4 is devoted to the examples: we mention, in particular, the
van der Pol equation, a resonant case inspired by Arnold, and Euler’s equations for a rigid body
under a damping moment linear in the angular velocity (which also manifest a resonance).

To simplify our exposition, many technical aspects are treated in the appendices. In
particular: appendices A, B and C contain the proofs of lemmas 2.1, 2.3 and proposition 2.5,
respectively; appendices D and E illustrate the computation of some auxiliary functions
required by the examples of section 4.

The examples presented in this paper are relatively simple, since their purpose is mainly
to test the effectiveness of the method. We postpone to later works (now in progress) the
treatment of harder applications.

2. Main results

2.1. Some notations

(i) Vectors of Rd are written with upper indices: X = (Xi)i=1,...,d . We use the spaces Tp
q (Rd)

of (p, q)-tensors over Rd , especially for (p, q) = (1, 1), (2, 0) and (1, 2); tensors of
these three types are represented as families of real coefficients A = (

A i
j

)
,B = (Bij ),

C = (
C i

jk

)
(i, j, k = 1, . . . , d).

Let X, Y ∈ Rd ,A ,D ∈ T1
1(R

d),B ∈ T2
0(R

d),C ∈ T1
2(R

d). We define the products
XY ∈ T2

0(R
d),A X ∈ Rd ,A D ∈ T1

1(R
d),C X ∈ T1

1(R
d),C B ∈ Rd by

(XY )ij := XiY j , (A X)i := A i
k Xk, (A D)ij := A i

k Dk
j ,

(C X)i� = C i
k�X

k, (C B)i := C i
k�B

k� (2.1)

(with Einstein’s summation convention over repeated indices; XX will be written as X2).
We note that A D is the ordinary product of A and D as matrices; 1d ,A −1 ∈ T1

1(R
d) will

denote the identity matrix, and the inverse matrix of A . The vector (C X)Y = C (XY )

will be written as C XY .
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All the considered tensor spaces can be equipped with an inner product ‘·’ and with
the corresponding Euclidean norm | |. If X, Y ∈ Rd ,A ,D ∈ T1

1(R
d) and C ,E ∈ T1

2(R
d),

X ·Y :=
d∑

i=1

XiY i, A ·D =
d∑

i,j=1

A i
j D i

j , C · E :=
d∑

i,j,k=1

C i
jkE

i
jk,

|X| :=
√

X · X, |A | :=
√

A · A , |C | :=
√

C · C .

(2.2)

(ii) Recalling that � ⊂ Rd is open, let h : � → Rd be C�. If � � 1 or � � 2, respectively,
the Jacobian and the Hessian of h at a point I are

∂h

∂I
(I ) :=

(
∂hi

∂I j
(I )

)
∈ T1

1(R
d),

∂2h

∂I 2
(I ) :=

(
∂2hi

∂I j ∂I k
(I )

)
∈ T1

2(R
d). (2.3)

Let us introduce the set (open in Rd × Rd )

�† := {(I, δI ) ∈ � × Rd | [I, I + δI ] ∈ �} (2.4)

(with [I, I + δI ] denoting the segment of Rd with the indicated extremes. For h as
before and � � 1 or � � 2, respectively, there are functions G ∈ C�−1

(
�†, T1

1(R
d)

)
and

H ∈ C�−2
(
�†, T1

2(R
d)

)
such that

h(I + δI ) = h(I) + G (I, δI )δI, (2.5)

h(I + δI ) = h(I) +
∂h

∂I
(I )δI +

1

2
H (I, δI )δI 2, H i

jk(I, δI ) = H i
kj (I, δI ). (2.6)

If d = 1, the above equations can be solved for G , H and determine them uniquely. If
d > 1, the above equations for G ,H have many solutions; in any dimension, explicit
solutions are given by the integral formulae

G (I, δI ) :=
∫ 1

0
dx

∂h

∂I
(I + xδI), H (I, δI ) := 2

∫ 1

0
dx(1 − x)

∂2h

∂I 2
(I + xδI) (2.7)

(for h of polynomial or rational type, G and H can be obtained more directly from the
expression of h(I + δI )).

In an obvious way, for a function h : � × T → Rd , we can define the derivatives
(∂h/∂I)(I, ϑ) ∈ T1

1(R
d), (∂h/∂ϑ)(I, ϑ) ∈ Rd, (∂2h/∂I 2)(I, ϑ) ∈ T1

2(R
d).

(iii) The average of a C� function h : � × T → Rd is the C� function h : � → Rd , I �→
h(I) := 1/(2π)

∫
T dϑh(I, ϑ); this notation has been already used in equation (1.6), with

h = f .

2.2. The main lemma: an integral equation for L

We consider the perturbed and averaged systems (1.3) and (1.6), for fixed ε > 0 and initial
data I0, ϑ0.

The integral equation we are going to derive will be the basic identity yielding our estimates
on |L(t)|; it involves a number of auxiliary functions, to be introduced as the construction
goes on.

First of all, s ∈ Cm(� × T, Rd) and p ∈ Cm−1(� × T, Rd) are the functions such that

f = f + ω
∂s

∂ϑ
, s = 0, p := ∂s

∂I
f +

∂s

∂ϑ
g. (2.8)
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The function s, which has a preminent role in estimates on |L|, is defined by (2.8) in an implicit
way; an explicit formula is4

s = z − z, z(I, ϑ) := 1

ω(I)

∫ ϑ

0
dϑ ′(f (I, ϑ ′) − f (I)). (2.9)

Another function to be used hereafter is the Jacobian ∂f

∂I
∈ Cm−1

(
�, T1

1(R
d)

)
. From now on,

U stands for an element of (0, +∞].

Lemma 2.1. Suppose the solution J of (1.6) exists for τ ∈ [0, U). Denote with
R : [0, U) → T1

1(R
d), τ �→ R(τ ) and K : [0, U) → Rd , τ �→ K(τ ) the solutions of

dR

dτ
= ∂f

∂I
(J)R, R(0) = 1d , (2.10)

dK

dτ
= ∂f

∂I
(J)K + p(J), K(0) = 0 (2.11)

(these exist and are Cm; R(τ ) is an invertible matrix for all τ ∈ [0, U), and K(τ ) =
R(τ )

∫ τ

0 dτ ′R(τ ′)−1p(J(τ ′)). For d = 1, R(τ ) = exp
∫ τ

0 dτ ′ ∂f

∂I
(J(τ ′)) ∈ (0, +∞)).

Furthermore, assume that the solution (I,�) of the perturbed system (1.3) exists for
t ∈ [0, U/ε), with (J(εt), I(t) − J(εt)) ∈ �†. Finally, define

L : [0, U/ε) → Rd , t �→ L(t) := 1

ε
[I(t) − J(εt)]. (2.12)

Then, for t ∈ [0, U/ε) it is

L(t)= s(I(t),�(t))− R(εt)s(I0, ϑ0)− K(εt)− ε

(
w(I(t),�(t))− ∂f

∂I
(J(εt))v(I(t),�(t))

)

+ ε2R(εt)

∫ t

0
dt ′R−1(εt ′)

(
u(I(t ′),�(t ′)) − ∂f

∂I
(J(εt ′))(w + q)(I(t ′),�(t ′))

− M (J(εt ′))v(I(t ′),�(t ′)) − G (J(εt ′), εL(t ′))L(t ′) +
1

2
H (J(εt ′), εL(t ′))L(t ′)2

)
.

(2.13)

In the above, v ∈ Cm(� × T, Rd), q,w ∈ Cm−1(� × T, Rd), u ∈ Cm−2(� × T, Rd), and
M ∈ Cm−2

(
�, T1

1(R
d)

)
are the functions uniquely defined by the following equations:

s = ω
∂v

∂ϑ
, v(I, ϑ0) = 0 for all I ∈ �, (2.14)

q := ∂v

∂I
f +

∂v

∂ϑ
g, (2.15)

p = p + ω
∂w

∂ϑ
, w(I, ϑ0) = 0 for all I ∈ �, (2.16)

u := ∂w

∂I
f +

∂w

∂ϑ
g, M := ∂2f

∂I 2
f −

(
∂f

∂I

)2

. (2.17)

Furthermore, G ∈ Cm−2
(
�†, T1

1(R
d)

)
and H ∈ Cm−2

(
�†, T1

2(R
d)

)
are two functions

fulfilling equations (2.5) for h = p and (2.6) for h = f : so, for (I, δI ) ∈ �†,

4 Here,
∫ ϑ

0 means integration along any path in T from 0 to ϑ ; the integral depends only on the extremes, because
the integrand has a zero average. The same could be said for other integrals appearing later.
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p(I + δI ) = p(I) + G (I, δI )δI, (2.18)

f (I + δI ) = f (I) +
∂f

∂I
(I )δI +

1

2
H (I, δI )δI 2, H i

jk(I, δI ) = H i
kj (I, δI ). (2.19)

Proof. It is obtained by a long computation, where the functions s, . . . ,H appear gradually.
See appendix A. �

Remarks.

(i) The above definitions must be understood in terms of the previous tensor notations;
for example, the equivalent formulation in components of equation (2.17) is

M i
j = ∂2f i

∂I k∂I j f k − ∂f i

∂I k

∂f k

∂I j . Of course v(I, ϑ) = ω−1(I )
∫ ϑ

ϑ0
dϑ ′s(I, ϑ ′), w(I, ϑ) =

ω−1(I ))
∫ ϑ

0 dϑ ′(p(I, ϑ ′) − p(I)).
(ii) If we write I(t) = J(εt) + εL(t), (2.13) becomes an integral equation for L. Most of the

terms therein are slow, i.e., depend on εt : the exceptions are L itself and the angle �.
The subsequent step after this lemma will be to infer from (2.13) an integral inequality
involving only the slow time variable εt ; we note that, even though the integral in
equation (2.13) is multiplied by ε2, this term appears to be of order ε if we consider εt ′

as the integration variable. In any case, the presence of a small factor ε in front of the
integral allows us to use for it fairly rough estimates.

2.3. A second lemma: an integral inequality for |L|
Throughout this section we assume that the solution J of the averaged system exists on [0, U),
and define R, K via equations (2.10) and (2.11). B(I, �) denotes the open ball in Rd of centre
I and radius �; we further suppose the following.

(i) There is a function ρ ∈ C([0, U), [0, +∞]) such that

B(J(τ ), ρ(τ )) ⊂ � for τ ∈ [0, U). (2.20)

We denote with ρ the subgraph of ρ, i.e.,

ρ := {(τ, r) | τ ∈ [0, U), r ∈ [0, ρ(τ ))}. (2.21)

(ii) There are functions

a, b, c, d, e ∈ C(ρ, [0, +∞)) (2.22)

such that, for any τ ∈ [0, U), δJ ∈ B(0, ρ(τ )) and ϑ ∈ T,

|s(J(τ ) + δJ, ϑ) − R(τ )s(I0, ϑ0) − K(τ )| � a(τ, |δJ |), (2.23)∣∣∣∣∣w(J(τ ) + δJ, ϑ) − ∂f

∂I
(J(τ ))v(J(τ ) + δJ, ϑ)

∣∣∣∣∣ � b(τ, |δJ |), (2.24)∣∣∣∣∣u(J(τ ) + δJ, ϑ) − ∂f

∂I
(J(τ ))(w + q)(J(τ ) + δJ, ϑ)

−M (J(τ ))v(J(τ ) + δJ, ϑ)

∣∣∣∣∣ � c(τ, |δJ |), (2.25)

|G (J(τ ), δJ )| � d(τ, |δJ |), (2.26)

|H (J(τ ), δJ )| � e(τ, |δJ |) (2.27)
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(note that (J(τ ), δJ ) ∈ �†, by the convexity of the sphere). The functions c, d, e are
assumed to be non-decreasing with respect to the second variable:

(τ, r), (τ, r ′) ∈ ρ, r � r ′ ⇒ c(τ, r) � c(τ, r ′), (2.28)

and similarly for d, e. Given a, b, c, d, e, we define the functions

α ∈ C(ρ, [0, +∞)), α(τ, r) := a(τ, r) + εb(τ, r), (2.29)

γ ∈ C(ρ × [0, +∞), [0, +∞)), γ (τ, r, �) := c(τ, r) + d(τ, r)� + 1
2e(τ, r)�2. (2.30)

We can now write the integral inequality for the function t �→ |L(t)|, with L as in (2.12).

Lemma 2.2. Assume that the solution (I,�) of the perturbed system exists on [0, U/ε), and
that |L(t)| < ρ(εt)/ε for all t ∈ [0, U/ε). Then

|L(t)| � α(εt, ε|L(t)|) + ε2|R(εt)|
∫ t

0
dt ′|R−1(εt ′)|γ (εt ′, ε|L(t ′)|, |L(t ′)|). (2.31)

Proof. We take the norm of both sides in equation (2.13). To estimate the right-hand side, we
use some Schwarz inequalities and equations (2.23)–(2.27) with δJ = I(t) − J(εt) = εL(t);
then, the thesis follows from definitions (2.29) and (2.30) of α and γ . �

2.4. A third lemma, on integral inequalities

To go on, we need a general result on a class of integral inequalities; we state it at an abstract
level, forgetting momentarily the function |L|.

Lemma 2.3. Let T ∈ (0, +∞], δ ∈ C([0, T ), [0, +∞]) and

� := {(t, �) | t ∈ [0, T ), � ∈ [0, δ(t))},
H := {(t, t ′, �) | t ∈ [0, T ), t ′ ∈ [0, t], (t ′, �) ∈ �}. (2.32)

Consider two functions ξ ∈ C(�, [0, +∞)) and η ∈ C(H, [0, +∞)), the latter non-decreasing
in the last variable: η(t, t ′, �′) � η(t, t ′, �) for (t, t ′, �) ∈ H and �′ ∈ [0, �]. Furthermore, let
l ∈ C([0, T ), [0, +∞)) and v ∈ C([0, T ), (0, +∞)) be such that graph l, graph v ⊂ �, and

l(0) = 0, l(t) � ξ(t, l(t)) +
∫ t

0
dt ′η(t, t ′, l(t ′)), (2.33)

v(t) > ξ(t, v(t)) +
∫ t

0
dt ′η(t, t ′, v(t ′)) (2.34)

for all t ∈ [0, T ). Then

l(t) < v(t) for all t ∈ [0, T ). (2.35)

Proof. It adapts that of a similar result in [5]; see appendix B. �

2.5. The main proposition

Throughout this section we still assume that the solution J of the averaged system exists on
[0, U), and define R, K via equations (2.10) and (2.11). We also assume there is a set of
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functions ρ, a, b, c, d, e as in section 2.3; α and γ are defined consequently, as indicated
therein.

Proposition 2.4. Assume that there is a function n ∈ C([0, U), (0, +∞)) such that, for all
τ ∈ [0, U),

n(τ ) < ρ(τ)/ε, (2.36)

n(τ ) > α(τ, εn(τ )) + ε|R(τ )|
∫ τ

0
dτ ′|R−1(τ ′)|γ (τ ′, εn(τ ′), n(τ ′)). (2.37)

Then, the solution (I,�) of the perturbed system exists on [0, U/ε); furthermore, defining L
as in equation (2.12) we have

|L(t)| < n(εt) for all t ∈ [0, U/ε). (2.38)

Proof. Let us recall that (I,�) is the maximal solution of (1.3), and denote its domain with
[0, V/ε); for the moment, this merely defines the coefficient V ∈ (0, +∞] (which can depend
on ε and be large, small, etc). To go on, we provisionally put

U ′ := min(V ,U); (2.39)

one of our aims is to show that U ′ = U , but this will be established only in the second step of
the proof. We also define L as in equation (2.12), but on the domain [0, U ′/ε).

Step 1. One has

|L(t)| < n(εt) for all t ∈ [0, U ′/ε). (2.40)

To show this, we write the integral inequality (2.37) with τ = εt, τ ′ = εt ′; this gives

n(εt) > α(εt, εn(εt)) + ε2|R(εt)|
∫ t

0
dt ′|R−1(εt ′)|γ (εt ′, εn(εt ′), n(εt ′)) (2.41)

for all t ∈ [0, U/ε), and a fortiori for t ∈ [0, U ′/ε).
On the other hand, lemma 2.2 can be applied with the constant U therein replaced by U ′,

because (I,�) is defined on [0, U ′/ε) and J is defined on [0, U ′); thus, equation (2.31) for
|L(t)| holds for t ∈ [0, U ′/ε). Now, we apply lemma 2.3 with

T := U ′

ε
, δ(t) := ρ(εt)/ε,

ξ(t, �) := α(εt, ε�), η(t, t ′, �) := ε2|R(εt)||R−1(εt ′)|γ (εt ′, ε�, �),
l(t) := |L(t)|, v(t) := n(εt);

(2.42)

of course, the initial condition l(0) = 0 holds because I(0) = I0 = J(0). Lemma 2.3 gives
l(t) < v(t), which is just the relation (2.40).

Step 2. It is

U ′ = U (2.43)

(thus (I,�) exists on [0, U/ε), and the inequality of step 1 holds on this interval).
It suffices to show that V � U ; to this purpose we suppose V < U , and infer a

contradiction. Indeed, let us put

K := {(t, I ) ∈ [0, V/ε] × Rd ||I − J(εt)| � εn(εt)}. (2.44)

This is a closed subset of R × Rd ; it is bounded, since t �→ J(εt), t �→ n(εt) are bounded
functions on [0, V/ε]. Thus, K is a compact subset of R × Rd . We note that (t, I ) ∈ K
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implies I ∈ B(J(εt), εn(εt)) ⊂ B(J(εt), ρ(εt)) ⊂ � (recall equations (2.36) and (2.20));
thus, K ⊂ [0, V/ε] × �.

The previous considerations ensure compactness of K × T ⊂ R × � × T; due to step 1,
we have graph (I,�) ⊂ K × T. The inclusion into a compact set and a standard continuation
principle for ordinary differential equations [9] imply that the solution (I,�) can be extended
to an interval larger than [0, V/ε). This contradicts our maximality assumption, and concludes
the proof. �

2.6. A differential reformulation of the previous results

For practical applications, and especially for the numerical implementation of our scheme
by standard packages, it is convenient to replace the integral inequality (2.37) for n with a
differential equation related to it. This equation is presented hereafter, and will be the basis
of all applications discussed in the next sections; it is supplemented by an initial condition,
defined implicitly by a fixed point problem.

In the following, we keep the assumptions at the beginning of section 2.5, but we require
some more regularity on the functions a, b, c, d, e fulfilling equations (2.23)–(2.27), namely,

a, b ∈ C2(ρ, R), c, d, e ∈ C1(ρ, R); (2.45)

so, the functions α, γ in equations (2.29), (2.30) are, respectively, of class C2 and C1.

Proposition 2.5

(i) Assume there are real numbers �∗ > 0,M � 0 and σ > 0 such that

� := [�∗ − σ, �∗ + σ ] ⊂ (0, ρ(0)/ε), (2.46)

M < 1/ε,

∣∣∣∣∂α

∂r
(0, ε�)

∣∣∣∣ � M for � ∈ �, (2.47)

|α(0, ε�∗) − �∗| + εMσ < σ. (2.48)

Then, the map � �→ α(0, ε�) sends the interval � into itself and is therein contractive
with Lipschitz constant εM . So, there is a unique �0 ∈ � solving the fixed point equation

α(0, ε�0) = �0. (2.49)

(ii) With �0 as above, let m, n ∈ C1([0, U), R) solve the Cauchy problem

dm

dτ
= |R−1|γ (·, εn, n), m(0) = 0, (2.50)

dn

dτ
=

(
1 − ε

∂α

∂r
(·, εn)

)−1 (
∂α

∂τ
(·, εn) + ε|R||R−1|γ (·, εn, n) + ε|R|−1

(
R · dR

dτ

)
m

)
,

n(0) = �0, (2.51)

with the domain conditions

0 < n < ρ/ε,
∂α

∂r
(·, εn) < 1/ε (2.52)

(note that (2.50) implies m � 0; in the above, ‘·’ is the inner product of equation (2.2)).

Then, the solution (I,�) of the perturbed system exists on [0, U/ε) and (with L as
in (2.12))

|L(t)| � n(εt) for all t ∈ [0, U/ε). (2.53)

Proof. It is found in appendix C, after a necessary lemma. �
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3. A summary of the method, and how to test it

3.1. The main steps to implement the scheme of the previous section

In the approach we have outlined, the steps to be performed are the following ones.

(i) Compute f and the functions s, p, . . . ,M ,G ,H of equations (2.8), (2.14)–(2.19).
(ii) Determine the solution J of equation (1.6), on some interval [0, U); solve equations (2.10)

and (2.11) for R, K on the same interval.
(iii) Find a set of functions ρ, a, b, c, d, e as in section 2.3, so as to fulfil the inequalities

(2.23)–(2.27); from them, define the functions α, γ via equations (2.29) and (2.30). In
the subsequent steps, we make on a, . . . , e the assumptions (2.45).

(iv) Determine �0, solving the fixed point problem (2.49).
(v) Search for functions m, n fulfilling equations (2.50) and (2.51), with the domain conditions

(2.52). If these equations and (1.6) have solutions on some interval [0, U), we can
grant the existence on [0, U/ε) for the solution (I,�) of (1.3), and we know that
L(t) := (I(t) − J(εt))/ε fulfils on this interval the bound |L(t)| � n(εt).

Here are some general comments on the practical implementation of the previous steps
(these will also be useful to introduce the examples of the next section).

(i) Of course, the computation of f , s, p, . . . ,M is more or less difficult depending on f, g

and ω, concerning especially the integrals over ϑ . These computations can involve special
functions (it should be noted that, in many examples coming from mechanics, f, g and
ω are themselves special functions). Generally, the determination of f , s, p, . . . ,M is
simple when, for fixed I, f and g are trigonometric polynomials in ϑ . Concerning G and
H , see the remarks that follow equations (2.5) and (2.6).

(ii) The determination of J, R, K will be analytical in the simplest cases, and otherwise
numerical.

(iii) For the implementation of our scheme, the functions b, c, d, e are slightly less important
than a; in fact, they are always multiplied by the small parameter ε whenever they appear
in steps (iii)–(v). For this reason, it is important to compute a estimating as accurately
as possible the left-hand side in equation (2.23); as for b, . . . , e, in many cases one can
accept rougher majorizations for the left-hand sides of equations (2.24)–(2.27).

In many applications, such as in the examples of the next section, the functions
a, b, . . . , e will have the form

a(τ, r) := â(J(τ ), R(τ ), K(τ ), r), b(τ, r) := b̂(J(τ ), r), . . . , e(τ, r) = ê(J(τ ), r)

(3.1)

depending on certain known functions

â ∈ C2(�̂, R), b̂ ∈ C2(ϒ̂, R), ĉ, d̂, ê ∈ C1(ϒ̂, R), (3.2)

with domains

�̂ ⊂ Rd × T1
1(R

d) × Rd × R open, ϒ̂ ⊂ Rd × R open (3.3)

such that

(J(τ ), R(τ ), K(τ ), r) ∈ �̂, (J(τ ), r) ∈ ϒ̂ for all (τ, r) ∈ ρ.

Of course, in this case it is

α(τ, r) = α̂(J(τ ), R(τ ), K(τ ), r), γ (τ, r, �) = γ̂ (J(τ ), r, �), (3.4)



3684 C Morosi and L Pizzocchero

where α̂ ∈ C2(�̂, R) and γ̂ ∈ C1(ϒ̂ × R, R) are defined by

α̂(J,R,K, r) := â(J,R,K, r) + ε̂b(J, r), (3.5)

γ̂ (J, r, �) := ĉ(J, r) + d̂(J, r)� + 1
2 ê(J, r)�2. (3.6)

Furthermore, the derivative ∂α/∂τ in equation (2.51) is given by
∂α

∂τ
(·, r) = ∂α̂

∂J
(J, R, K, r) · dJ

dτ
+

∂α̂

∂R
(J, R, K, r) · dR

dτ
+

∂α̂

∂K
(J, R, K, r) · dK

dτ
(3.7)

with ∂α̂/∂R := (
∂α̂/∂Ri

j

)
, etc. In these situations, the function τ �→ ρ(τ) determining

the domain of a, . . . , e will often depend on τ through J, i.e., ρ(τ) = ρ̂(J(τ )).
The structure (3.1) for a, b, etc appears naturally in the cases where these functions

can be obtained maximizing the left-hand sides of equations (2.23) and (2.24), etc by
analytical means.

In more complicated situations, one could consider the possibility of determining a, b,
etc, maximizing the left-hand sides of equations (2.23), (2.24), etc by numerical (or
partially numerical) techniques. These would give tables of numerical maxima, to be
subsequently interpolated by elementary functions to get a, b, etc. A second possibility is
to derive the evolution equation for the maximum points of interest as a function of τ , to
be coupled with the other differential equations in our general framework; this approach
should work if there are no bifurcations.

Both possibilities outlined above are especially interesting for the function a, since this
requires the greatest accuracy; however, they will be investigated elsewhere.

(iv) The fixed point �0 in (2.49) is given by the standard iterative formula �0 = limn→+∞ ln,
where ln := α(0, εln−1) and l1 is chosen arbitrarily in �. One can compute numerically
the sequence (ln) up to a sufficiently large value n = N , and then assume �0 � lN .5

(v) Even in the cases where all the other functions have known analytical expressions, the
differential equations (2.50) and (2.51) for m, n will be typically too difficult to be solved
analytically. So, a numerical treatment will be necessary.
If we do not have analytical expressions for J, R, K, it may be convenient to regard
equations (1.6), (2.10), (2.11), (2.50) and (2.51) as a coupled system for the unknowns
J, R, K,m, n, to be solved numerically on a chosen interval [0, U).

3.2. The ‘N-operation’

Let us fix the attention on the simple situations where the functions f , s, . . . ,H have known
analytical expressions and a, b, c, d, e have the form (3.1), depending on known functions
â, . . . , ê. It is not difficult to write a program of general use for these situations, which
computes the fixed point �0 and the functionsJ, R, K,m, n solving numerically equations (2.49),
(1.6), (2.11), (2.50) and (2.51). From now on, the computation of �0, J, . . . , n by such a
program, for given f , . . . , ê (and I0, ϑ0, U ), will be referred to as the N-operation. Of course,
the main outcomes of this operation are the solution J of the averaged system and the function
n binding |L(t)|.

We have written a general program for the above purpose, using the MATHEMATICA
system. Concerning equation (2.51) for n, in this program the derivative ∂α/∂τ is expressed
via equation (3.7); the derivatives dJ/dτ, dK/dτ and dR/dτ which occur in (3.7) and (2.51)
are expressed via equations (1.6) and (2.10), (2.11) (MATHEMATICA is also useful, in the
symbolic mode, to produce the input of the above program, i.e., the functions f , . . . , ê; this
will appear from the examples of the next section).
5 By the standard theory of contractions, |�0 − lN | � (εM)N−1|l2 − l1|/(1 − εM), where M is the constant in
proposition 2.5.
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3.3. Testing the effectiveness of the previous method: the ‘L-operation’

By the L-operation we mean, essentially, the computation of L by a direct numerical solution
of the perturbed system on [0, U/ε). To avoid misunderstandings, we stress that in the present
framework the purpose of the L-operation is merely to check the reliability of the estimate
|L(t)| � n(εt) produced by the N-operation, and to prove quantitatively that the direct solution
of the perturbed system is generally much slower than N. When U/ε is very large, the L-
operation may be impossible within reasonable times; an example will be given in the next
section (see figure 3(f ), and the explanations for it). Of course, the main usefulness of the
N-operation is just the treatment of these cases!

To be precise, the L-operation is the numerical determination of J, L,� in the following
way. First, the function τ ∈ [0, U) → J(τ ) is obtained solving the averaged system (1.6) for
J; then, the functions t ∈ [0, U/ε) → L(t),�(t) are determined solving their exact evolution
equations derived from (1.3) and (1.6), i.e.,{

(dL/dt)(t) = f (J(εt) + εL(t),�(t)) − f (J(εt)), L(0) = 0,

(d�/dt)(t) = ω(J(εt) + εL(t)) + εg(J(εt) + εL(t),�(t)), �(0) = ϑ0.
(3.8)

It is easy to write a MATHEMATICA program that computes numerically J, L,� for given
f, g, ω, I0, ϑ0.

When the L-operation can be performed within reasonable times, it can be used to test
the N-procedure along these lines:

(i) one compares the graph of the estimator n (an N-output) with the graph of the function
|L| (an L- output);

(ii) one also compares the CPU times TN,TL for the two operations.

These tests are presented in the next section; they are based on the programs mentioned
here and in section 3.2. In most examples, the estimator n practically coincides with the
envelope of the rapidly oscillating graph of |L|; furthermore, TN is generally smaller than TL

by one or more orders of magnitude.

4. Examples

In any example we consider, the initial condition for the angle is always

ϑ0 := 0. (4.1)

Given f, g and ω, the functions f , s, . . . ,G ,H and ρ, a, . . . , e are computed explicitly for
all I0 (and U). After this, specific choices are made for I0, U and ε, and the N-operation
is performed; to test the accuracy of the method, the L-operation is also performed and
some comparisons are made, as suggested at the end of the previous section. The results are
summarized in the figures which conclude the section. Each figure gives the graph of the
estimator n(τ ) provided by N for τ ∈ [0, U); it also gives the graph of |L(τ/ε)| in the same
interval (except one case, where L has not been possible within reasonable times).

Figures referring to an example are labelled by the same number and by a letter (so,
figures 1(a)–(c) refer to example 1). The legend of each figure specifies the choices of
I0, ε, U , and the CPU times TN,TL (in seconds) in the execution of the two operations6.

In the chosen examples, one derives simple analytical expressions for the functions
J, R, K but not for m, n. However, with the view of a general comparison between the N-
and L-operations, all examples have been treated by the general MATHEMATICA programs

6 Of course these times, depending on the PC employed, are merely indicative.
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Figure 1. (a) I0 = 1/2, ε = 10−2, U = 10. Graphs of n(τ ) and |L(τ/ε)|. TN = 0.062 s, TL =
3.2 s. (b) I0 = 4, ε = 10−2, U = 10. Graphs of n(τ ) and |L(τ/ε)|. TN = 0.078 s, TL = 3.0 s.
(c) I0 = 4, ε = 10−2, U = 200. Graphs of n(τ ) and |L(τ/ε)|. TN = 0.45 s, TL = 67 s.

mentioned in sections 3.2 and 3.3, which solve numerically all the differential equations
involved. Therefore, the reported times TN, TL include contributions from the determination
of J, R, K (except trivial cases, where R = 1 or K = 0). In any case, the analytical expressions
of these functions are written for completeness.

For each example:

(i) the auxiliary functions s, . . . ,H , ρ, a, . . . , e are reported in a table. All the
related computations are analytical; the most lengthy have been performed using
MATHEMATICA in the symbolic mode.

(ii) The function ρ always gives the distance of J(τ ) from the boundary of the actions space �.
(iii) Some details on the computation of the functions a and b, c are given in appendices D

and E, respectively. The expressions for d, e follow trivially from those for G ,H in the
corresponding tables.

Example 1 (the van der Pol equation). This is a system of the form (1.3) for (I,�), with

d := 1, � := (0, +∞), ω(I) := −1,

f (I, ϑ) := I

(
1 − I

2

)
− I cos(2ϑ) +

I 2

2
cos(4ϑ), (4.2)

g(I, ϑ) := 1 − I

2
sin(2ϑ) − I

4
sin(4ϑ).
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Table 1. Auxiliary functions for example 1.

For I ∈ (0, +∞), ϑ ∈ T and δI ∈ (−I, +∞):

s(I, ϑ) = I
8 (4 sin(2ϑ) − I sin(4ϑ)), v(I, ϑ) = − I

32 (8 − I − 8 cos(2ϑ) + I cos(4ϑ)),

p(I, ϑ) = I
8 ((4 − 2I − I 2) sin(2ϑ) + I (I − 4) sin(4ϑ) + I 2 sin(6ϑ)), p(I ) = 0,

q(I, ϑ) = − I
32 (16 − 10I + 2I 2 − (16 − I 2) cos(2ϑ) + I (10 − 2I ) cos(4ϑ) − I 2 cos(6ϑ)),

w(I, ϑ) = − I
96 (24 − 24I − I 2 − 6(4 − 2I − I 2) cos(2ϑ) + 3I (4 − I ) cos(4ϑ) − 2I 2 cos(6ϑ)),

u(I, ϑ) = − I
128 (64 − 120I + 36I 2 + I 3 + (−64 + 64I + 50I 2 − 12I 3) cos(2ϑ)

+ 4I (14 − 17I − I 2) cos(4ϑ) + 6I 2(−3 + 2I ) cos(6ϑ) + 3I 3 cos(8ϑ)),

M (I ) = −1 + I − 1
2 I 2, G (I, δI ) = 0,H (I, δI ) = −1.

For τ ∈ [0, U), ρ(τ) := J(τ ).

For τ ∈ [0, U) and r ∈ [0, J (τ )):

a(τ, r) := 1
8 (−2 + 10(J + r)2 + (J + r)4 + 2(1 + 2(J + r)2)3/2)

1/2
J=J(τ ),

b(τ, r) := 1
96 (120J 6 + 12J 5(23 + 56r) + 3J 4(192 + 474r + 517r2)

+ 12J 3r(72 + 180r + 157r2) + 6J 2r2(372 + 530r + 231r2) + 12J r3(216 + 213r + 46r2)

+ r4(1404 + 690r + 91r2))
1/2
J=J(τ ),

c(τ, r) := 1
384 (6512J 8 + 24J 7(671 + 2096r) + 24J 6(1693 + 5484r + 6956r2)

+ 8J 5(1812 + 31 188r + 39 375r2 + 38 726r3) + 12J 4(768 + 4436r + 61 358r2 + 37 966r3 + 29 997r4)

+ 8J 3r(4680 + 39 948r + 125 584r2 + 62 193r3 + 35 046r4) + 12J 2r2(1824 + 52 152r

+ 61 180r2 + 37 311r3 + 12 021r4) + J r3(119 808 + 445 536r + 425 592r2 + 210 995r3 + 41 976r4),

+ 4r4(21 600 + 33 024r + 30 127r2 + 10 383r3 + 1377r4))
1/2
J=J(τ ),

d(τ, r) := 0, e(τ, r) := 1.

The functions x := √
2I cos �, v := √

2I sin � fulfil the equations ẋ = v, v̇ = −x −
ε(x2 − 1)v, yielding the familiar van der Pol equation ẍ + x + ε(x2 − 1)ẋ = 0. It is found that

f (I) = I

(
1 − I

2

)
; (4.3)

the auxiliary functions s, v, . . . ,H of section 2.2 are reported in table 1.7

The averaged system (1.6) has the solution

J(τ ) = 2I0

I0 + (2 − I0) e−τ
(4.4)

for τ ∈ [0, +∞), tending to 2 for τ → +∞: this long time behaviour is the manifestation, in
the averaging approximation, of the well-known limit cycle of the van der Pol equation (J(τ )

also exists for some or all τ < 0, but we are not interested in this fact). The Cauchy problems
(2.10) and (2.11) for the unknown real functions R, K have solutions

R(τ ) = 4e−τ

(I0 + (2 − I0) e−τ )2
, K(τ ) = 0 (4.5)

for τ ∈ [0, +∞). From now on, τ is confined to an interval [0, U) (and, of course, U will be
chosen finite in the subsequent numerical computations).

7 We note that the domain �† is made of pairs (I, δI ) as indicated in table 1. In all the other examples, �† can be
read as well from the tables.
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Our next step is to construct functions ρ, a, . . . , e as in section 2.3; these are also reported
in table 1.8 All the functions a, . . . , e are C∞ in (τ, r), and non-decreasing in r; they have
the form a(τ, r) = â(J(τ ), r), b(τ, r) = b̂(J(τ ), r), . . . , e(τ, r) = ê(J(τ ), r), where â, b̂, ĉ

are read from the table and d̂ := 0, ê := 1 everywhere; this corresponds to a special case of
equation (3.1). Similar remarks could be made for the other examples, but will be no longer
repeated.

Comments on this example and the figures. Figures 1(a)–(c) refer to the initial data I0 = 1/2
or I0 = 4, one below and the other above the critical value = 2 (i.e., the limit cycle in the
averaging approximation); U is 10 or 200. The ratio TN/TL is between 1/150 and 1/40, in the
three cases. Due to the limit cycle, one expects |L(τ/ε)| to be bounded on the whole interval
[0, +∞); this fact is reproduced very well by our estimator n(τ ), that appears to approach a
constant value for large τ (see in particular figure 1(c)).

Example 2 (a case with action-dependent frequency). We choose

d = 1, � := (0, +∞), ω(I) := I,

f (I, ϑ) := κI 2(1 − cos(2ϑ)), g(I, ϑ) := κI 2(1 + cos(2ϑ)), κ ∈ {±1}. (4.6)

It is

f (I) = κI 2, (4.7)

and the auxiliary functions s, v, . . . ,H are reported in table 2. Let us comment on the
vanishing of ω for I → 0. Our framework shows this ‘resonance’ to be false: in fact, even
though equations (2.8), (2.14) and (2.16) for s, v,w contain a factor 1/ω, in this case none of
these functions is singular for I → 0, since f, g vanish in this limit more rapidly than ω.

The averaged system (1.6) is fulfilled with

J(τ ) = I0

1 − κτI0
for τ ∈ [0,Wκ,I0), Wκ,I0 :=

{
1/I0 if κ = +1,

+∞ if κ = −1.
(4.8)

Equations (2.10) and (2.11) for R, K have solutions

R(τ ) = 1

(1 − κI0τ)2
, K(τ ) = κI 2

0 log(1 − κI0τ)

2(1 − κI0τ)2
� 0 (4.9)

on the same domain. In the following, we assume τ ∈ [0, U), with U � Wκ,I0 ; the functions
ρ (the same of example 1) and a, b, c, d, e are also reported in table 2.

Comments on this example and the figures. Figures 2(a)–(c) refer to the case κ = 1, while
figures 2(d) and (e) refer to κ = −1; the initial datum is always I0 = 1. The two cases
are radically different: in fact, according to equation (4.8), the solution J(τ ) of the averaged
system diverges for τ → 1− if κ = 1, whereas for κ = −1 it is defined for arbitrarily large τ

and vanishes for τ → +∞. The figures seem to indicate a similar behaviour for the function
τ �→ |L(τ/ε)|; this behaviour is reproduced very well by our estimator n(τ ), which remains
close to the envelope of |L(τ/ε)| even for κ = 1 and τ close to 1 (see, in particular, figures 2(a)
and (c)).

8 The functions b, c constructed in this way could be replaced by appropriate, simpler majorants reducing the
‘confidence interval’ [0, J(τ )) for r; for example, one could redefine ρ(τ) := min(J(τ ), 1/10) and infer upper
bounds for b, c by means of the inequalities rk � r/10k−1, for k = 2, 3, . . ., holding for r ∈ [0, ρ(τ )). These
upper bounds are fairly simple, since they depend linearly on r; of course, their use is correct if one checks a
posteriori that 0 < εn(τ ) < min(J(τ ), 1/10) for all τ ∈ [0, U). However, to perform the N-operation in all cases
presented in the figures we have used directly the complicated expressions in table 1, since these are easily handled
by MATHEMATICA.
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Table 2. Auxiliary functions for example 2.

For I ∈ (0, +∞), ϑ ∈ T and δI ∈ (−I, +∞):

s(I, ϑ) = − κ
2 I sin(2ϑ), v(I, ϑ) = − κ

4 (1 − cos(2ϑ)),

p(I, ϑ) = − 1
4 I 2(2I + 4I cos(2ϑ) + 2 sin(2ϑ) + 2I cos(4ϑ) − sin(4ϑ)), p(I ) = − 1

2 I 3,

q(I, ϑ) = − 1
4 I 2(2 sin(2ϑ) + sin(4ϑ)),

w(I, ϑ) = − 1
16 I (3 − 4 cos(2ϑ) + 8I sin(2ϑ) + cos(4ϑ) + 2I sin(4ϑ)),

u(I, ϑ) = − κ
32 I 2(16I 2 + 10 + (40I 2 − 15) cos(2ϑ) + 40I sin(2ϑ)

+ (32I 2 + 6) cos(4ϑ) − 8I sin(4ϑ) + (8I 2 − 1) cos(6ϑ) − 8I sin(6ϑ)),

M (I ) = 6I 2, G (I, δI ) := − 1
2 (3I 2 + 3IδI + δI 2), H (I, δI ) := 2κ .

For τ ∈ [0, U), ρ(τ) := J(τ ).

For τ ∈ [0, U) and r ∈ [0, J (τ )):

a(τ, r) := 1
2 (J(τ ) + r) − K(τ ),

b(τ, r) := 1
8
√

2
(50J 4 + (55 + 200r)J 3 + (38 + 85r + 300r2)J 2

+ (65 + 33r + 200r2)J r + (32 + 27r + 50r2)r2)
1/2
J=J(τ ),

c(τ, r) := 1
16

√
2
(4608J 8 + (3904 + 36 864r)J 7 + (1520 + 23 296r + 129 024r2)J 6 + (1856

+ 5696r + 57 792r2 + 258 048r3)J 5 + (4853 + 5352r + 10 032r2 + 76 160r3 + 322 560r4)J 4

+ (3086 + 7824r + 11 008r2 + 56 000r3 + 258 048r4)J 3r + (1862 + 2976r + 9808r2

+ 21 504r3 + 129 024r4)J 2r2 + (1024 + 2312r + 5440r2 + 7168r3 + 36 864r4)J r3

+ (512 + 752r + 1296r2 + 1280r3 + 4608r4)r4)
1/2
J=J(τ ),

d(τ, r) := 1
2 (3J 2 + 3J r + r2)J=J(τ ), e(τ, r) := 2.

Table 3. Auxiliary functions for example 3.

For I ∈ (0, +∞), ϑ ∈ T and δI ∈ (−I, +∞):

s(I, ϑ) = − 1
I

sin ϑ, v(I, ϑ) = − 1
I2 (1 − cos ϑ),

p(I, ϑ) = 1
2I2 (2 sin ϑ − sin(2ϑ)), p(I ) = 0,

q(I, ϑ) = 1
I3 (3 − 4 cos ϑ + cos(2ϑ)), w(I, ϑ) = q(I,ϑ)

4 ,

u(I, ϑ) = 3
8I4 (−10 + 15 cos ϑ − 6 cos(2ϑ) + cos(3ϑ)),

M (I ) = 0, G (I, δI ) := 0,H (I, δI ) := 0.

For τ ∈ [0, U), ρ(τ) := J(τ ).

For τ ∈ [0, U) and r ∈ [0, J (τ )):

a(τ, r) := 1
J(τ )−r

, b(τ, r) := 2
(J(τ )−r)3 , c(τ, r) := 12

(J(τ )−r)4 ,

d(τ, r) := 0, e(τ, r) := 0.

Example 3 (a truly resonant case). Let us pass to a case where the vanishing of ω for I → 0
gives rise to singularities for s, v,w and other auxiliary functions. We assume

d = 1, � := (0, +∞), ω(I) := I,

f (I, ϑ) := 1 − cos ϑ, g(I, ϑ) := 0.
(4.10)

This example is considered in [4, 7] to introduce the subject of resonances; it is inspired by a
two-frequency example in [2]. In this case,

f (I) = 1; (4.11)

the functions s, . . . ,G ,H are reported in table 3. The averaged system (1.6) has the
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Figure 2. (a) κ = 1, I0 = 1, ε = 10−2, U = 0.9. Graphs of n(τ ), |L(τ/ε)| (note that J(τ ) → +∞
for τ → 1−). TN = 0.032 s, TL = 0.36 s. (b) κ = 1, I0 = 1, ε = 10−2 (as in (b)). Graphs of
n(τ ), |L(τ/ε)| in a detailed view, for τ ∈ [0, 0.5]. (c) κ = 1, I0 = 1, ε = 10−2 (as in (a)). Graphs
of n(τ ), |L(τ/ε)| in a detailed view, for τ ∈ [0.75, 0.9]. (d) κ = −1, I0 = 1, ε = 10−2, U = 200.

TN = 0.078 s, TL = 0.58 s. Graphs of n(τ ), |L(τ/ε)| in a detailed view, for τ ∈ [0, 10].
(e) κ = −1, I0 = 1, ε = 10−2 (as in (d)). Graphs of n(τ ), |L(τ/ε)| in a detailed view, for
τ ∈ [100, 200].

solution

J(τ ) = I0 + τ (4.12)

for τ ∈ [0, +∞). Equations (2.10) and (2.11) for R, K are very simple in this case, since
∂f

∂I
= 0 and p = 0; this implies

R(τ ) = 1, K(τ ) = 0. (4.13)

From now on, τ ∈ [0, U); the functions ρ, a, b, c, d, e are reported in table 3.
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Figure 3. (a) I0 = 1/2, ε = 10−2, U = 10. Graphs of n(τ ) and |L(τ/ε)|. TN = 0.23 s, TL =
0.95 s. (b) I0 = 1/2, ε = 10−2 (as in (a)). Graphs of n(τ ) and |L(τ/ε)| in a detailed
view, for τ ∈ [0, 1). (c) I0 = 1/2, ε = 10−3, U = 10. Graphs of n(τ ) and |L(τ/ε)|.
TN = 0.23 s, TL = 12 s. (d) I0 = 1/2, ε = 10−3 (as in (c)). Graphs of n(τ ) and |L(τ/ε)|
in a detailed view, for τ ∈ [0, 1). (e) I0 = 2, ε = 10−2, U = 10. Graphs of n(τ ) and
|L(τ/ε)|. TN = 0.16 s, TL = 1.2 s. (f ) I0 = 2, ε = 10−2, U = 200. Graph of n(τ ).
TN = 0.28 s, TL > 240 s.

Comments on this example and the figures. The resonance for I → 0+ could be expected to
give problems for initial data I0 close to zero (these problems should appear mainly for small
τ , since equation (4.12) for J shows a departure from the resonance as τ grows). As a matter
of fact, the estimator n approximates well the envelope of |L(τ/ε)| even for small τ and data
fairly close to zero, such as I0 = 1/2: the agreement is rather good for ε = 10−2 (figures 3(a)
and (b)) and very good for ε = 10−3 (figures 3(c) and (d)).
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The agreement between n and the envelope of |L| is very good even for ε = 10−2, if we
consider the larger datum I0 = 2 (figure 3(e)). Figure 3(f ) refers to the same situation on
the larger interval τ ∈ [0, 200). The statement on TL in the legend means that the numerical
computation of L was interrupted after 240 s, when the package had not yet produced a result;
note that, on the contrary, the N-operation for the same interval is very fast.

Example 4 (damped Euler’s top). We consider the system (1.3), with

d = 2, � := {I = (I 1, I 2)|I 1, I 2 ∈ (0, +∞)}, ω(I ) = I 1I 2,

f (I, ϑ) := (−I 1(λ1 + µ cos(2ϑ)),−I 2(λ2 − µ cos(2ϑ)), g(I, ϑ) := µ sin(2ϑ); (4.14)

this depends on three real coefficients µ, λ1, λ2 for which we assume

λ1 > 0, −λ1 < µ < λ1, λ2 > −λ1. (4.15)

This system is related to Euler’s equations for the components p, q, r of the angular velocity
of an axially symmetric top, in the presence of weak damping. More precisely, assume
that the moment of the damping forces is a linear function of the angular velocity, and
that the linear operator expressing this dependence has a diagonal matrix −ε diag(E, F,G)

in the reference system in which the inertia operator has the form diag(A,A,C), with
A,C,E, F,G, ε ∈ (0, +∞).9 Then, Euler’s equations are

Aṗ + (C − A)qr = −εEp, Aq̇ − (C − A)pr = −εFq, C ṙ = −εGr. (4.16)

Given this system, we define µ, λ1, λ2 through the equations

E = A(µ + λ1), F = A(λ1 − µ), G = C(λ1 + λ2), (4.17)

which imply the inequalities (4.15). Now, if (I,�) = (I1, I2,�) is such that İ = εf (I,�)

and �̇ = ω(I) + εg(I,�), the functions

p := I1 cos �, q := I1 sin �, r := A

C − A
I1I2 (4.18)

fulfil Euler’s equations (4.16).
Let us return to (4.14). This implies

f (I) = (−λ1I
1,−λ2I

2); (4.19)

the functions s, . . . ,G ,H are reported in table 4. The averaged system has the solution

Ji (τ ) = I i
0 e−λiτ (i = 1, 2) (4.20)

for τ ∈ [0, +∞). Equations (2.10) and (2.11) for the 2 × 2 matrix function R and for the
2-component function K have the solutions

R(τ ) = diag(e−λ1τ , e−λ2τ ), K(τ ) = (0, 0). (4.21)

From now on, τ is confined as usually to an interval [0, U). The functions ρ, a, . . . , e for this
example are reported in table 4; the length of the expressions of b, c is mainly due to the need
for covering all possible values of λ1, λ2, µ.

9 Of course, quantities like A, . . . , G, the time t, etc, can be treated as real numbers, because we suppose to have
fixed all the necessary physical units.
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Table 4. Auxiliary functions for example 4.

For I = (I 1, I 2) ∈ (0, +∞)2, ϑ ∈ T and δI = (δI 1, δI 2) ∈ (−I 1, +∞) × (−I 2, +∞):

s(I, ϑ) = µ
2 sin(2ϑ)

(
− 1

I2 , 1
I1

)
, v(I, ϑ) = µ

2I1I2 sin2 ϑ
(
− 1

I2 , 1
I1

)
,

p(I, ϑ) = µ sin(2ϑ)
2

(
− λ2+µ cos(2ϑ)

I2 ,
λ1+3µ cos(2ϑ)

I1

)
, p(I ) = (0, 0),

q(I, ϑ) = µ sin2 ϑ

2I1I2

(
− 2λ2+2µ+λ1+µ cos(2ϑ)

I2 ,
λ2+2µ+2λ1+3µ cos(2ϑ)

I1

)
,

w(I, ϑ) = µ sin2 ϑ

2I1I2

(
− λ2+µ cos2 ϑ

I2 ,
λ1+3µ cos2 ϑ

I1

)
, u(I, ϑ) = µ sin2 ϑ

4I1I2

×
(
− 4λ2

2+6λ2µ+2λ2λ1+µλ1+µ(4λ2+3µ+λ1) cos(2ϑ)+3µ2 cos2(2ϑ)

I2 ,

3λ2µ+2λ2λ1+10µλ1+4λ2
1+3µ(λ2+5µ+4λ1) cos(2ϑ)+15µ2 cos2(2ϑ)

I1

)
,

∂f
∂I

(I ) =
(−λ1 0

0 −λ2

)
, M (I ) =

(−λ2
1 0

0 −λ2
2

)
,G (I, δI ) = 0, H (I, δI ) = 0.

For τ ∈ [0, U), ρ(τ) := min(J1(τ ), J2(τ )).

For τ ∈ [0, U) and r ∈ [0, J (τ )):

a(τ, r) := |µ|
2

(
1

(J1(τ )−r)2 + 1
(J2(τ )−r)2

)1/2 ;

b(τ, r) := |µ| (b11J
1(τ )2+b22J

2(τ )2+b1J
1(τ )r+b2J

2(τ )r+b0r2)1/2

8(J1(τ )−r)2(J2(τ )−r)2 ,

b11 := 16
(
λ2

1 + λ2
2

)
+ λ1(12λ2 + 20|λ2|) + 2(λ1 + λ2)µ + 4(λ1 + |λ2|)|µ| + µ2,

b22 := 16
(
λ2

1 + λ2
2

)
+ λ1(12λ2 + 20|λ2|) + 6(λ1 + λ2)µ + 12(λ1 + |λ2|)|µ| + 9µ2,

b1 := 32
(
λ2

1 + λ2
2

)
+ 64λ1|λ2| + 12(λ1 + |λ2|)|µ| + 2µ2,

b2 := 32
(
λ2

1 + λ2
2

)
+ 64λ1|λ2| + 36(λ1 + |λ2|)|µ| + 18µ2,

b0 := 16
(
λ2

1 + λ2
2

)
+ λ1(12λ2 + 20|λ2|) + 4(λ1 + λ2)µ + 14(λ1 + |λ2|)|µ| + 9µ2;

c(τ, r) := |µ| (c11J
1(τ )2+c22J

2(τ )2+c1J
1(τ )r+c2J

2(τ )r+c0r2)1/2

32(J1(τ )−r)2(J2(τ )−r)2 ,

c11 := 1024
(
λ4

1 + λ4
2

)
+ 6144λ2

1λ
2
2 + 512

(
λ2

1 + λ2
2

)
λ1(3λ2 + 5|λ2|) + 640

(
λ3

1 + λ3
2

)
µ

+ 896
(
λ3

1 + |λ2|3
)
|µ| + 1920(λ1 + λ2)λ1λ2µ + 2688(λ1 + |λ2|)λ1|λ2||µ| + 704

(
λ2

1 + λ2
2

)
µ2

+ 32λ1(17λ2 + 27|λ2|)µ2 − 24(λ1 + λ2)µ
3 + 264(λ1 + |λ2|)|µ|3 + 27µ4,

c22 := 1024
(
λ4

1 + λ4
2

)
+ 6144λ2

1λ
2
2 + 512

(
λ2

1 + λ2
2

)
λ1(3λ2 + 5|λ2|) + 384

(
λ3

1 + λ3
2

)
µ

+ 1408
(
λ3

1 + |λ2|3
)
|µ| + 1152(λ1 + λ2)λ1λ2µ + 4224(λ1 + |λ2|)λ1|λ2||µ| + 2816

(
λ2

1 + λ2
2

)
µ2

+ 32λ1(21λ2 + 155|λ2|)µ2 + 120(λ1 + λ2)µ
3 + 1800(λ1 + |λ2|)|µ|3 + 675µ4,

c1 := 2048
(
λ4

1 + λ4
2

)
+ 12 288λ2

1λ
2
2 + 8192

(
λ2

1 + λ2
2

)
λ1|λ2| + 3072

(
λ3

1 + |λ2|3
)
|µ|

+ 9216(λ1 + |λ2|)λ1|λ2||µ| + 1408
(
λ2

1 + λ2
2

)
µ2 + 2816λ1|λ2|µ2 + 576(λ1 + |λ2|)|µ|3 + 54µ4,

c2 := 2048
(
λ4

1 + λ4
2

)
+ 12 288λ2

1λ
2
2 + 8192

(
λ2

1 + λ2
2

)
λ1|λ2| + 3584

(
λ3

1 + |λ2|3
)
|µ|

+ 10 752(λ1 + |λ2|)λ1|λ2||µ| + 5632
(
λ2

1 + λ2
2

)
µ2 + 11 264λ1|λ2|µ2 + 3840(λ1 + |λ2|)|µ|3 + 1350µ4,

c0 := 1024
(
λ4

1 + λ4
2

)
+ 6144λ2

1λ
2
2 + 512

(
λ2

1 + λ2
2

)
λ1(3λ2 + 5|λ2|) + 512

(
λ3

1 + λ3
2

)
µ

+ 2048
(
λ3

1 + |λ2|3
)
|µ| + 1536(λ1 + λ2)λ1λ2µ + 6144(λ1 + |λ2|)λ1|λ2||µ| + 2816

(
λ2

1 + λ2
2

)
µ2

+ 32λ1(19λ2 + 157|λ2|)µ2 + 48(λ1 + λ2)µ
3 + 1872(λ1 + |λ2|)|µ|3 + 675µ4;

d(τ, r) := 0; e(τ, r) := 0.
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Figure 4. (a) µ = 1, λ1 = 2, λ2 = −1, I 1
0 = 4, I 2

0 = 4, ε = 10−2, U = 1. Graphs of n(τ ) and
|L(τ/ε)|. TN = 0.047 s, TL = 1.7 s. (b) µ = 1, λ1 = 2, λ2 = −1, I 1

0 = 4, I 2
0 = 1, ε =

10−2, U = 1. Graphs of n(τ ) and |L(τ/ε)|. TN = 0.047 s, TL = 0.44 s. (c) µ = 1, λ1 = 2, λ2 =
−1, I 1

0 = 4, I 2
0 = 1, ε = 10−3, U = 1. Graphs of n(τ ) and |L(τ/ε)|. TN = 0.047 s, TL = 4.2 s.

(d) µ = 1, λ1 = 1.1, λ2 = −1, I 1
0 = 4, I 2

0 = 4, ε = 10−3, U = 3. Graphs of n(τ ) and |L(τ/ε)|.
TN = 0.046 s, TL = 99 s.

Comments on this example and the figures. In this case the main difficulty is the fact, following
from (4.20) and (4.15), that J1(τ )J2(τ ) = I 1

0 I 2
0 e−(λ1+λ2)τ is small for large τ . On the other

hand, ω(I) vanishes for I 1I 2 → 0, and in this limit many auxiliary functions diverge; so, the
averaged system falls exponentially into a resonance.

In this situation one expects a rapid growth of |L|, which is in fact confirmed by
figures 4(a)–(d); the same figures show that our estimator n(τ ) approximates well the envelope
of |L(τ/ε)| on [0, U ], when U is of the order of the unity. In figure 4(d), a good agreement
between |L(τ/ε)| and |n(τ )| is attained on the longest interval among the four pictures (namely,
for τ ∈ [0, 3)). This is because we take, simultaneously, the largest value for I 1

0 I 2
0 and the

lowest values for ε and λ1 + λ2.
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Appendix A. Proof of lemma 2.1

First of all, the Cauchy problem (2.10) has a (unique) solution on [0, U), and this is
Cm, because we have a linear differential equation for R, with a Cm−1 matrix function

τ �→ ∂f

∂I
(J(τ )). The invertibility of R(τ ) follows from the Wronskian identity det R(τ ) =

det R(0) exp
∫ τ

0 dτ ′ tr ∂f

∂I
(J(τ ′)) and from the initial condition R(0) = 1d ; the d = 1 expression

of R is obvious. The statements on K that follow equation (2.11) are also elementary (as for
the Cm regularity, note that p(J) is a Cm−1 function of τ ).
To go on, we introduce the short-hand notations

J, R, K,
dJ

dτ
, etc ≡ the functions t �→ J(εt), R(εt), K(εt),

dJ

dτ
(εt), etc; (A.1)

in the same spirit, for h : � × T → Rd and k : � → Rd we also intend

h, k, k(J) ≡ the functions t �→ h(I(t),�(t)), t �→ k(I(t)), t �→ k(J(εt)). (A.2)

In these notations, one has L = (I − J)/ε and equations (1.3) and (1.6) imply

dL

dt
= 1

ε

(
dI

dt
− ε

dJ

dτ

)
= f − f (J); (A.3)

we continue dividing the argument in steps.

Step 1. One has

dL

dt
= ω

∂s

∂ϑ
+ ε

∂f

∂I
(J)L +

1

2
ε2H (J, εL)L2. (A.4)

In fact, equation (A.3) and the first equation (2.8) imply

dL

dt
= ω

∂s

∂ϑ
+ f − f (J); (A.5)

now, it suffices to recall that I = J + εL and use equation (2.19) with (I, δI ) replaced by
(J, εL) .

Step 2. For each function h ∈ C1(� × T, Rd), it is

ω
∂h

∂ϑ
= dh

dt
− ε

(
∂h

∂I
f +

∂h

∂ϑ
g

)
. (A.6)

This follows easily from

dh

dt
= ∂h

∂I

dI

dt
+

∂h

∂ϑ

d�

dt
= ε

∂h

∂I
f +

∂h

∂ϑ
(ω + εg). (A.7)

Step 3. One has

ω
∂s

∂ϑ
= ds

dt
− ε

dw

dt
− εp(J) + ε2(u − G (J, εL)L). (A.8)

To prove this, we note that equation (A.6) with h = s and definition (2.15) of p give

ω
∂s

∂ϑ
= ds

dt
− εp. (A.9)

On the other hand, equations (2.16), (A.6) with h = w and definition (2.17) of u imply

p = p + ω
∂w

∂ϑ
= p +

dw

dt
− εu; (A.10)
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furthermore, equation (2.18) with (I, δI ) replaced by (J, εL) gives

p = p(J) + εG (J, εL)L. (A.11)

Inserting equation (A.11) into (A.10), and the result into (A.9), we get the equality (A.8).

Step 4. One has

dL

dt
− ε

∂f

∂I
(J)L = ds

dt
− ε

dw

dt
− εp(J) + ε2(u − G (J, εL)L +

1

2
H (J, εL)L2). (A.12)

This follows immediately from equation (A.4) and from the equality (A.8).

Introducing the next steps

Equation (A.12) is an equality involving total derivatives, or nonderivative terms proportional
to ε or ε2. Our aim is to obtain an equality for L involving only total derivatives
or nonderivative terms proportional to ε2; due to the structure of the terms in ε of
equation (A.12), this result can be achieved using the functions R and K. In the following,
we will derive some identities involving R, where the operator R(d/dt)R−1 plays a major role;
inserting these relations into equation (A.12) (and factoring out R) we will finally obtain an
identity with the desired structure, where the nonderivative terms are confined to the order ε2.

Step 5. One has

dR−1

dt
= −εR−1 ∂f

∂I
(J). (A.13)

For each C1 function X : [0, U/ε) → Rd , t �→ X(t), this implies

dX

dt
− ε

∂f

∂I
(J)X = R

d

dt
(R−1X). (A.14)

Equation (A.13) follows from the relation

0 = d

dt
(RR−1) = dR

dt
R−1 + R

dR−1

dt
= ε

∂f

∂I
(J) + R

dR−1

dt
, (A.15)

where, in the last passage, we have used equation (2.10) to express dR/dt = εdR/dτ .
Having established (A.13), we consider any function X as above and note that

dX

dt
− ε

∂f

∂I
(J)X = dX

dt
+ R

dR−1

dt
X = R

(
R−1 dX

dt
+

dR−1

dt
X

)
, (A.16)

whence equation (A.14).

Step 6. One has

dL

dt
− ε

∂f

∂I
(J)L = R

d

dt
(R−1L), ε

dw

dt
= εR

d

dt
(R−1w) + ε2 ∂f

∂I
(J)w, (A.17)

εp(J) = R
d

dt
(R−1K), (A.18)

ds

dt
= R

d

dt
(R−1s) + εR

d

dt

(
R−1 ∂f

∂I
(J)v

)
− ε2

(
M (J)v +

∂f

∂I
(J)q

)
, (A.19)

(note that the right-hand sides of equations (A.17)–(A.19) all appear in equation (A.12)).
Equations (A.17) are mere applications of the general identity (A.14) with X = L and X = w

(i.e., the function w(I,�)), respectively. Equation (A.18) follows writing (A.14) with X = K,
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and expressing dK/dt = ε dK/dτ via equation (2.11). The derivation of equation (A.19) is a
bit longer. First of all, from equation (A.14) with X = s we infer

ds

dt
= R

d

dt
(R−1s) + ε

∂f

∂I
(J)s; (A.20)

to continue, we will reexpress ∂f

∂I
(J)s as R× a total derivative, plus terms of the first order in

ε. To this purpose, we write s in terms of v via equation (2.14), and then use equation (A.6)
with h = v; this gives

s = ω
∂v

∂ϑ
= dv

dt
− ε

(
∂v

∂I
f +

∂v

∂ϑ
g

)
= dv

dt
− εq, (A.21)

the last passage following from definition (2.15) of q. This implies

∂f

∂I
(J)s = ∂f

∂I
(J)

dv

dt
− ε

∂f

∂I
(J)q = d

dt

(
∂f

∂I
(J)v

)
− d

dt

(
∂f

∂I
(J)

)
v − ε

∂f

∂I
(J)q. (A.22)

On the other hand, equation (A.14) with X = ∂f

∂I
(J)v and equation (1.6) give, respectively,

d

dt

(
∂f

∂I
(J)v

)
= R

d

dt

(
R−1 ∂f

∂I
(J)v

)
+ ε

(
∂f

∂I
(J)

)2

v, (A.23)

d

dt

(
∂f

∂I
(J)

)
= ∂2f

∂I 2
(J)

dJ

dt
= ε

∂2f

∂I 2
(J)f (J). (A.24)

Substituting equations (A.23)–(A.24) into (A.22), and recalling the definition (2.17) of M ,
we finally get

ε
∂f

∂I
(J)s = εR

d

dt

(
R−1 ∂f

∂I
(J)v

)
− ε2

(
M (J)v +

∂f

∂I
(J)q

)
; (A.25)

inserting this result into equation (A.20), we obtain the desired relation (A.19).

Step 7. One has

d

dt
(R−1L) = d

dt
(R−1(s − K)) − ε

d

dt

(
R−1(w − ∂f

∂I
(J)v)

)

+ ε2R−1

(
u − ∂f

∂I
(J)(w + q) − M (J)v − G (J, εL)L +

1

2
H (J, εL)L2

)
.

(A.26)

To prove this, we return to (A.12) and reexpress dL/dt − ε
∂f

∂I
(J)L, ds/dt, εdw/dt, εp(J) via

equations (A.17)–(A.18). Multiplying both sides by R−1, we obtain equation (A.26).

Step 8. Conclusion of the proof. We integrate equation (A.26) from 0 to t, explicitating the
dependence of all objects on I,�, J, t and taking into account the initial conditions for I, �,
J, R, K, as well as the relations L(0) = 0, v(I, ϑ0) = w(I, ϑ0) = 0. This gives an expression
for R−1(εt)L(t): multiplying by R(εt), we get the thesis (2.13).
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Appendix B. Proof of lemma 2.3

As anticipated, we are inspired by the proof of a similar statement in [5] (see chapter XII,
section 23, theorem 1); therefore we merely sketch the argument. Let us define

T := {t1 ∈ (0, T )|l(t) < v(t) for all t ∈ [0, t1)}, T1 := sup T . (B.1)

(Note that (2.34) and (2.33) give v(0) > ξ(0, v(0)) � 0 = l(0); so, by continuity, T is
nonempty.) In the sequel we will assume T1 < T , and infer a contradiction.

From (B.1), it is clear that l(T1) � v(T1). We cannot have l(T1) < v(T1) since this, by
continuity, would be against the definition of T1; thus

l(T1) = v(T1). (B.2)

On the other hand, the assumptions of the lemma and (B.2) imply

l(T1) �(1) ξ(T1, l(T1)) +
∫ T1

0
dt ′η(T1, t

′, l(t ′)) =(2) ξ(T1, v(T1)) +
∫ T1

0
dt ′η(T1, t

′, l(t ′))

�(3) ξ(T1, v(T1)) +
∫ T1

0
dt ′η(T1, t

′, v(t ′)) <(4) v(T1), (B.3)

which gives again a contradiction. (For better clarity: relations (1)–(4) follow, respectively,
from (2.33), (B.2), the monotonicity of η and (2.34)).

Appendix C. Proof of proposition 2.5

We begin with a lemma; this holds under the same assumptions written at the beginning of
section 2.5, before stating proposition 2.4.

Lemma C.1. Assume that there is a family of functions nδ ∈ C([0, Uδ), (0, +∞)), labelled by
a parameter δ ∈ (0, δ∗], such that the following holds

(i) Uδ → U for δ → 0+;
(ii) for all δ ∈ (0, δ∗] and τ ∈ [0, Uδ), it is

nδ(τ ) < ρ(τ)/ε, (C.1)

nδ(τ ) = δ + α(τ, εnδ(τ )) + ε|R(τ )|
∫ τ

0
dτ ′|R−1(τ ′)|γ (τ ′, εnδ(τ

′), nδ(τ
′)); (C.2)

(iii) for each fixed τ ∈ [0, U), the limit n(τ ) := limδ→0+ nδ(τ ) exists in [0, +∞) (note that
τ ∈ [0, Uδ) for sufficiently small δ, due to (i)).

Then the solution (I,�) of the perturbed system exists on [0, U/ε) and

|L(t)| � n(εt) for all t ∈ [0, U/ε). (C.3)

Proof. Of course, (ii) implies

nδ(τ ) > α(τ, εnδ(τ )) + ε|R(τ )|
∫ τ

0
dτ ′|R−1(τ ′)|γ (τ ′, εnδ(τ

′), nδ(τ
′)) (C.4)

for all δ ∈ (0, δ∗] and τ ∈ [0, Uδ). Therefore, proposition 2.4 can be applied to the function
nδ on the interval [0, Uδ); this implies that (I,�) exists on [0, Uδ/ε), and

|L(t)| < nδ(εt) for all t ∈ [0, Uδ/ε). (C.5)

Now, sending δ to zero and using (iii) we easily obtain the thesis. �
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We now pass to proposition 2.5. So, we have the assumptions at the beginning of section 2.5,
strengthened by the smoothness requirements (2.45) for a, b, c, d, e.

Proof of proposition 2.5. For the sake of brevity, we put

α0 : � → R, � �→ α0(�) := α(0, ε�) (C.6)

and extend this definition to any δ � 0 setting

αδ : � → R, � �→ αδ(�) := α0(�) + δ. (C.7)

We proceed in several steps.

Step 1. For each δ � 0, αδ is a contractive map. In fact, for all �, �′ ∈ �, we have

|αδ(�) − αδ(�
′)| = ε

∣∣∣∣∂α

∂r
(0, ε�)

∣∣∣∣ |� − �′| � εM|� − �′|. (C.8)

But εM < 1 by the first inequality (2.47), so the thesis is proved.

Step 2. There is δ∗ > 0 such that, for all δ ∈ [0, δ∗], αδ sends � into itself. In fact, for any
δ � 0 and � ∈ �,

|αδ(�) − �∗| = |α0(�) + δ − �∗| � |α0(�) − α0(�∗)| + |α0(�∗) − �∗| + δ

� εM|� − �∗| + |α0(�∗) − �∗| + δ � εMσ + |α0(�∗) − �∗| + δ, (C.9)

where the second inequality follows from equation (C.8) with δ = 0. Now, let us define

δ∗ := (1 − εM)σ − |α0(�∗) − �∗|, (C.10)

and note that δ∗ > 0 by (2.48). For δ ∈ [0, δ∗] and � ∈ �, equations (C.9), (C.10) imply
|αδ(�) − �∗| � σ , i.e., αδ(�) ∈ �.

Step 3. For all δ ∈ [0, δ∗], the map αδ has a unique fixed point �δ ∈ �, which depends
continuously on δ. The existence and uniqueness of the fixed point follows from the Banach
theorem on contractions; to prove continuity we note that, for all δ, δ′ ∈ [0, δ∗],

|�δ − �δ′ | = |αδ(�δ) − αδ′(�δ′)| = |α0(�δ) + δ − α0(�δ′) − δ′|
� |α0(�δ) − α0(�δ′)| + |δ − δ′| � εM|�δ − �δ′ | + |δ − δ′|, (C.11)

the last inequality depending on (C.8) with δ = 0. This implies

|�δ − �δ′ | � |δ − δ′|
1 − εM

, (C.12)

so the map δ �→ �δ is Lipschitz, and a fortiori continuous.

Step 4. Proving the thesis of (i). This follows from step 3, with δ = 0.

Step 5. Proving the thesis of (ii). For any δ ∈ [0, δ∗], let �δ be as in step 3. From the standard
continuity theorems for the solutions of a parameter-dependent Cauchy problem, we know
that there is a family (Uδ,mδ, nδ)δ∈(0,δ∗] with the following properties (a) and (b):

(a) for all δ ∈ (0, δ∗], it is mδ, nδ ∈ C1([0, Uδ), R); furthermore, these functions fulfil the
equations

dmδ

dτ
= |R−1|γ (·, εnδ, nδ), mδ(0) = 0, (C.13)

dnδ

dτ
=

(
1 − ε

∂α

∂r
(·, εnδ)

)−1 (
∂α

∂τ
(·, εnδ) + ε|R||R−1|γ (·, εnδ, nδ)

+ ε|R|−1

(
R · dR

dτ

)
mδ

)
,
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nδ(0) = �δ (C.14)

with the domain conditions

0 < nδ < ρ/ε,
∂α

∂r
(·, εnδ) < 1/ε. (C.15)

(b) One has

Uδ →δ→0+ U, nδ(t) →δ→0+ n(t), mδ(t) →δ→0+ m(t) for all t ∈ [0, U), (C.16)

where m, n are as stated in (ii).

Let us consider the pair mδ, nδ for any δ ∈ (0, δ∗]. Then, integrating (C.13),

mδ(τ ) =
∫ τ

0
dτ ′|R−1(τ ′)|γ (τ ′, εnδ(τ

′), nδ(τ
′)) for τ ∈ [0, Uδ). (C.17)

Furthermore, from equation (C.14) we infer

0 =
(

1 − ε
∂α

∂r
(·, εnδ)

)
dnδ

dτ
−

(
∂α

∂τ
(·, εnδ) + ε|R||R−1|γ (·, εnδ, nδ) + ε|R|−1

(
R · dR

dτ

)
mδ

)
=

(
1 − ε

∂α

∂r
(·, εnδ)

)
dnδ

dτ
−

(
∂α

∂τ
(·, εnδ) + ε|R|dmδ

dτ
+ ε

d|R|
dτ

mδ

)
; (C.18)

the last passage depends on equation (C.13) for mδ , and from the identity d|R|/dτ =
d
√
R · R/dτ = |R|−1(R · dR/dτ). The result (C.18) can be rephrased as

0 = d

dτ
(nδ − α(·, εnδ) − ε|R|mδ); (C.19)

the constant value of the above function can be computed setting τ = 0, and is

nδ(0) − α(0, εnδ(0)) = �δ − α(0, ε�δ) = �δ − α0(�δ) = δ (C.20)

(recall the initial condition in (C.14), equations (C.6), (C.7) and step 3, giving �δ = αδ(�δ) =
α0(�δ) + δ). Therefore,

nδ(τ ) − α(τ, εnδ(τ )) − ε|R(τ )|mδ(τ ) = δ for τ ∈ [0, Uδ). (C.21)

From equations (C.21) and (C.17), we see that nδ fulfils equation (C.2) of lemma C.1. Due to
equation (C.16) on the limit for δ → 0+, from lemma C.1 we finally obtain the thesis. �

Appendix D. The functions a of the examples

Example 1. One must determine a function fulfilling equation (2.23) for τ ∈ [0, U), δJ ∈
(−J(τ ), J(τ )) and ϑ ∈ T. Neither K nor R (nor the initial datum) play a significant role
in this computation, since K = 0, s(I0, ϑ0) = 0 and R(τ ) appears in equation (2.23) as a
multiplier for the second of these vanishing terms. In conclusion, to obtain a we can simply
bind |s(J(τ ) + δJ, ϑ)| in terms of J(τ ) and r := |δJ |.
Consider any point I ∈ �; of course,

max
ϑ∈T

|s(I, ϑ)| = (
max
ϑ∈T

s2(I, ϑ)
)1/2

. (D.1)

Derivating with respect to ϑ , one finds that the maximum of s2 is attained for cos2 ϑ =
1/2 + (1 −

√
1 + 2I 2)/(4I ); by elementary computations, this gives

max
ϑ∈T

|s(I, ϑ)| = a(I ), (D.2)

where a is the C∞, strictly increasing function given by

a : (0, +∞) → (0, +∞), I �→ a(I ) := 1
8

(−2 + 10I 2 + I 4 + 2(1 + 2I 2)3/2
)1/2

. (D.3)



On the average principle for one-frequency systems 3701

Let τ ∈ [0, U), δJ ∈ (−J(τ ), J(τ )), ϑ ∈ T and r := |δJ |. Then,

|s(J(τ ) + δJ, ϑ)| � a(J(τ ) + δJ ) � a(J(τ ) + r), (D.4)

the last term above is just the function a(τ, r) of table 1.

Example 2. We refer again to equation (2.23); as in the previous example, R(τ ) plays no
role, since it appears in equation (2.24) as a multiplier for the term s(I0, ϑ0) = 0. A simple
computation gives

|s(J(τ ) + δJ, ϑ) − K(τ )| = | − κ

2
(J(τ ) + δJ ) sin(2ϑ) − K(τ )|

� 1

2
(J(τ ) + |δJ |) + |K(τ )| = 1

2
(J(τ ) + |δJ |) − K(τ ); (D.5)

this means that equation (2.23) is fulfilled by the function a in the table 2.

Example 3. Again, R and K play no role in the analysis of equation (2.23) and it suffices to
bind |s(J(τ ) + δJ, ϑ)| in terms of r := |δJ |. Clearly,

|s(J(τ ) + δJ, ϑ)| � 1

|J(τ ) + δJ | � 1

J(τ ) − r
; (D.6)

therefore, equation (2.23) is fulfilled by the function of table 3.

Example 4. On the left-hand side of equation (2.23), the terms K(τ ) and s(I0, ϑ0) are zero;
so, to find a we must bind |s(J(τ ) + δJ, ϑ)| in terms of r := |δJ |. Maximization with respect
to ϑ can be done analytically; as a final result, equation (2.23) is fulfilled by the function a in
table 4.

In each example, the function a determined as above gives an accurate bound on the
left-hand side of equation (2.23).

Appendix E. The functions b, c of the examples

(i) In comparison with a, the functions b, c, d, e in equations (2.24)–(2.27) can be constructed
using rougher majorizations, see the comments in section 3.1. Here we fix the attention
on b and c, since the functions d, e of the examples are obtained trivially.

(ii) In all the examples, to find b and c we must essentially derive a majorant for an expression
of the form h(J(τ ), δJ, ϑ), where h(J, δJ, ϑ) is a trigonometric polynomial in ϑ , whose
coefficients are polynomials in J and δJ . The majorant should depend only on J(τ ) and
|δJ |; so, the problem is reduced to finding a function k such that

h(J, δJ, ϑ) � k(J, r) for ϑ ∈ T and r := |δJ |. (E.1)

Let us exemplify this situation in the construction of b; computations for c are quite
similar.

Example 1. To find b we can bind
(
w(J(τ ) + δJ, ϑ) − ∂f

∂I
(J(τ ))v(J(τ ) + δJ, ϑ)

)2
, which

has the form h(J(τ ), δJ, ϑ) with h a polynomial as above; the square root of the majorant
k(J(τ ), r) is b(τ, r).

Example 2. This computation is very similar to that for example 1.
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Example 3. The left-hand side of equation (2.24) is∣∣∣∣∣w(J(τ ) + δJ, ϑ) − ∂f

∂I
(J(τ ))v(J(τ ) + δJ, ϑ)

∣∣∣∣∣
= 3 − 4 cos ϑ + cos(2ϑ)

4(J(τ ) + δJ )3
� 2

(J(τ ) + δJ )3
� 2

(J(τ ) − r)3

∣∣∣∣
r=|δJ |

. (E.2)

Example 4. In this case,

|w(J(τ ) + δJ, ϑ) − ∂f

∂I
(J(τ ))v(J(τ ) + δJ, ϑ)|2 = h(J(τ ), δJ, ϑ)

(J1(τ ) + δJ 1)4(J2(τ ) + δJ 2)4
(E.3)

with h a polynomial as before. After finding for h a bound of the form (E.1), we combine it
with the obvious relation (Ji (τ ) + δJ i)−4 � (Ji (τ ) − r)−4 for r := |δJ |; the square root of
the final majorant is b(τ, r).

(iii) Up to now, we have not explained how to get elementary bounds of the form (E.1) on
a polynomial h. Here we illustrate a general procedure (computations to apply it in
examples 1–4 are generally too tedious to be made by hand, but are easily implemented
on MATHEMATICA).

(a) In the expression of h(J, δJ, ϑ), if d = 1 we put δJ = r cos ψ with ψ = 0 or π ; if
d = 2, we set δJ = (r cos ψ, r sin ψ) with ψ ∈ T.

(b) Now, h(J, δJ, ϑ) has the form of a trigonometric polynomial in ϑ,ψ with coefficients
depending on J . We write this in a canonical form, reexpressing any term in ϑ and ψ as a
linear combination of sines and cosines (e.g., cos4 ϑ sin(2ϑ)2 = (1/32)(5 + 4 cos(2ϑ) −
4 cos(4ϑ) − 4 cos(6ϑ) − cos(8ϑ)).

(c) As a final step, we bind each summand of h using the relations |cos|, |sin| � 1.
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